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Model of C60 fullerene, „H2O…60 water, and other similar clusters

Sergey Siparov
Department of Physics, Academy of Civil Aviation, 38 Pilotov Street, St. Petersburg, 196210, Russia

~Received 19 September 2000; published 15 June 2001!

An analytical calculation of the partition function for the lattice gas model of a finite fullerene type cluster
and of an infinite nanotube type cluster is presented. The method of calculation is based on the Vdovichenko
random walk approach. There appear to be two values of critical temperature, and the heat capacity in their
vicinities is proportional to (T2Tc)

21.
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I. INTRODUCTION

The lattice gas model is well known and is widely used
statistical mechanics@1#. It has a close relation to the Isin
model for the phase transition in a ferromagnet@2#. If there is
a system of spins interacting with nearest neighbors and
cated in the vortices of a lattice of a certain symmetry, th
at a particular temperature spontaneous magnetization
pears. Similarly, at a particular temperature an atomic st
ture consisting of the atoms interacting with nearest nei
bors can appear. Analytical solutions for these models
known only for two-dimensional infinite planar structur
such as the square, the triangle, and the honeycomb latt
In three dimensions numerical methods are used.

In the field of material science two problems that attr
the attention of researchers are the formation, structure,
properties of fullerenes and the properties of water in spec
conditions when it demonstrates a kind of phase transi
between a low-density liquid phase and a high-density liq
phase at low temperatures. Not to discuss these questio
detail, we address the reader to such reviews as@3,4# and to
the great number of references mentioned there. The c
mon feature for both of these phenomena could be the s
metry of the corresponding atomic~molecular! clusters.

The simplest fullerene~not to mention nanotubes yet! pre-
sents a cluster of 60 carbon atoms coordinated like the
tices of a soccer ball with 12 pentagons and 20 hexagon
facets. This conformation is possible because of the f
chemical bonds characterizing a carbon atom. But this is
the only atom~or molecule! with four bonds. A water mol-
ecule, for example, is able to create a tetrahedrally coo
nated open network with the help of four hydrogen bon
attached to every oxygen atom. When simulated on a c
puter @6# in two dimensions, the ‘‘water molecules’’ aggre
gated in groups that demonstrated a fivefold orientatio
order, while hexagonal symmetry was in a sense a
present. This result suggests the idea that, if the t
dimensional surface had a curvature, then the water m
ecules could form a soccer-ball type structure having
oxygen atoms in the vertices. The recent results@7# of a
numerical investigation of a microscopicspherical pore c
taining water molecules on its inside surface confirms suc
possibility, at least in the case when there is an external fi
of the pore’s walls. But the existence of C60 clusters chal-
lenges one to think that~H2O!60 clusters could also form in
certain thermodynamic conditions in the absence of any
1063-651X/2001/64~1!/016111~5!/$20.00 64 0161
o-
n
p-

c-
-

re

es.

t
nd
c
n
d
in

m-
-

r-
as
r

ot

i-
s
-

al
o
-
l-
e

-
a
ld

d-

ditional field. In this case, if these conditions are fulfilled a
such clusters start to form, the density of water will beco
much less than that of bulk water, and a low-density liqu
phase could appear.

The goal of this paper is to analyze the symmetry prop
ties of an A60 cluster and to present a calculation of th
partition function for the corresponding lattice gas mod
~hereA is an arbitrary atom or molecule initially able to form
a tetrahedral network, and hence potentially able to form
soccer-ball cluster!. We are going to apply the Vdovitchenk
method for solution of the Ising problem. A detailed descr
tion of this method can be found in@5#. The method is based
on the calculation of the number of random walk loops on
infinite flat plane with a certain symmetry type of the dist
bution of vertices. In the problem under discussion he
there is a finite set of vertices, but it can be shown that
method remains valid for this case too. Extending the re
obtained to an infinite cluster~see below!, we will be able to
describe such an interesting physical system as the ca
nanotube. It will be shown that not only is the method us
here applicable to this system, but it is also free from cert
approximations used when dealing with finiteA60 clusters.

II. CALCULATION OF THE PARTITION FUNCTION

In the further analysis we are going to consider a rand
walk on a finite lattice that presents a set of vertices o
soccer-ball cluster surface. Every step of this walk cover
single bond and leads to one of the neighboring vertic
Every bond of the soccer-ball cluster has one and the s
length and every vertex has three nearest neighbors.
symmetry of the surface is rather complicated due to
existence of both hexagons and pentagons as facets.

Thus, first of all, we have to topologically transform th
soccer-ball surface lattice in such a way that a conven
procedure for the random walk calculation can be develop
Let us assume that the bonds connecting the vertices
elastic and can expand, although every single step in
future random walk will still cover the whole bond betwee
the neighboring vertices. The topological transformati
goes in two stages. In the first stage we ‘‘pass a cylinde
through the opposite pentagons of the soccer ball and let
elastic bonds with vertices stick around the cylinder. In t
second stage we ‘‘inflate’’ this cylinder radially and obta
the lattice structure shown in Fig. 1~a! ~points i and i 8 coin-
cide, i 51,...,5!. Now instead of a ball’s surface we obtain
©2001 The American Physical Society11-1
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SERGEY SIPAROV PHYSICAL REVIEW E 64 016111
cylinder side surface and a finite ‘‘square’’ lattice with tru
~physical! periodic conditions. Every vertex has three near
neighbors as initially, and every bond will be covered by
single step of a random walk, according to our assumpt
There is an apparent division of vertices into two setsR and
L: R set contains the vertices having right nearest neighb
and L contains the vertices having left nearest neighb
@part of the border between the sets is shown in Fig. 1~a! by
the dashed line#. The structure obtained suggests the idea
passing to a similar infinite structure following the same r
@Fig. 1~b!#. This new structure obviously represents a na
tube whose wall atoms are organized in a lattice with
same type of symmetry. One can see that the majority of
polygons in such a lattice are hexagons, which is in agr
ment with the known structure of carbon nanotubes. In
following calculations we will discuss simultaneously bo
the finite and the infinite lattices.

The next step is to find an expression for the partit
function and calculate it. To have a clearer understandin
the following, see the corresponding chapter in@5#. Let J be
the nearest neighbor interaction energy; then the expres
for the partition function can be written

Z5(
$s%

expH 2QF (
$k,l PR%

~sk,lsk,l 111sk,lsk11,l !

1 (
$k,l PL%

~sk,lsk,l 111sk,lsk11,l !G J
5S~12x2!2N, ~1!

whereS$s% means the summation over all possible config
rations, Q5J/2kT, k is the Boltzmann constant,T is the
absolute temperature, the factor1

2 is due to the double count
ing of each pair of vertices while summing over both se
x5tanhQ, and N is the number of vertices. Here we pr
serve for convenience the notation characteristic of a m
netic system@the obvious correlation between the magne

FIG. 1. View of the soccer-ball lattice after topological transfo
mation. Pointsi and i 8 coincide fori 51,...,5.
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variabless (m,1)51, s (m,2)521 and the lattice gas variable
s ( l ,1)50, s l ,251 is s ( l ,1)5 1

2 (s (m,1)1s (m,2)), s ( l ,2)

5 1
2 (s (m,1)2s (m,2))#. The expression forS has the form

S5(
$s%

F )
$k,l PR%

~11xsk,lsk,l 11!~11xsk,lsk11,l !

3 )
$k,l PL%

~11xsk,lsk,l 11!~11xsk,lsk11,l !G . ~2!

To calculate the polynomial in Eq.~2!, a diagram tech-
nique developed by Vdovichenko and discussed in@5# can be
used. Ifx corresponds to a bond between two neighbor v
tices, the polynomial will correspond to the number of loop

Remark1. It is important to emphasize that this techniq
is designed in such a way that the loops containing the
perposed bonds vanish. That is why this technique rem
valid for the case of the finite lattice discussed here.~This
also means that the same technique will apply for vario
nanotubes of the same symmetry type.! Notice also that the
summation overk andl here is different from what it is in the
case of an infinite planar lattice. Equations~1! and ~2! give
the exact value of the partition function.

With regard to Remark 1, the result of the calculation c
be written

S5expS 2(
r 51

`

xr f r D , ~3!

wheref r stands for the sum over single loops ofr steps each.
Now let us introduceWr(k,l ,n)—the sum over all possible
paths ofr steps starting from the given vertex (k0 ,l 0 ,n0) to
the vertex (k,l ,n) in such a way that the last step to th
vertex (k,l ,n) does not take place from the directionn @n
51 ~right!, 2 ~up!, 3 ~left!, 4 ~down!#. According to the
obtained symmetry structure~Fig. 1!, n53 is forbidden for
(k,l )PR, and n51 is forbidden for (k,l )PL. Then, as in
@5#, we get

S52N expF2(
r 51

`

(
k0l 0n0

xr

2r
Wr~k0 ,l 0 ,n0!G . ~4!

It is possible to get the recurrence relations betweenWr 11
andWr from the definition ofWr(k,l ,n). For R they can be
written as

Wr 11~k,l ,1!501exp~ ip/4!Wr~k11,l ,2!10

1exp~2 ip/4!Wr~k21,l ,4!, ~5!

Wr 11~k,l ,2!5exp~2 ip/4!Wr~k11,l ,1!1010

1Wr~k21,l ,4!,

Wr 11~k,l ,3!50101010,

Wr 11~k,l ,4!5exp~ ip/4!Wr~k,l 11,1!1Wr~k11,l ,2,!10

10.
1-2
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MODEL OF C60 FULLERENE, ~H2O!60 WATER, AND . . . PHYSICAL REVIEW E 64 016111
Similarly, for L we get

Wr 11~k,l ,1!50101010, ~6!

Wr 11~k,l ,2!50101exp~ ip/4!Wr~k,l 21,3!1Wr~k

21,l ,4!,

Wr 11~k,l ,3!501exp~2 ip/4!Wr~k11,l ,2!10

1exp~ ip/4!Wr~k21,l ,4!,

Wr 11~k,l ,4!501Wr~k11,l ,2!

1exp~2 ip/4!Wr~k,l 21,3!10.

The exponential factors correspond to the turns neede
complete the loops. In a compact form Eqs.~5! and ~6! can
be expressed as

Wr 11~k,l ,n!5 (
k8,l 8,n8

L~klnuk8l 8n8!Wr~k8,l 8,n8!,

where the matrixL elements can be associated with a ‘‘tra
sition probability’’ per step for a randomly walking poin
The probability of having a path ofr steps will thus be given
by L r . The diagonal elements of this matrix present t
probability that the randomly walking point will return to it
original position afterr steps, and thus

Tr~L r !5 (
k0l 0n0

Wr~k0 ,l 0 ,n0!
01611
to

e
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f r5
1

2r (
i

l i
r , ~7!

wherel i are the eigenvalues of the matrix. Substituting E
~7! into Eq. ~3!, we get

S52N)
i 51

8

A12xl i . ~8!

Now we come to the direct calculation of the partitio
function and, consequently, we need the form of theL ma-
trix.

Remark 2. In our case there are two sets of vertices a
consequently, there are two systems of equations. T
means that the matrix of coefficients must have a Jor
~normal! form.

To diagonalize the matrixL with respect to indicesk and
l, the Fourier transformation is most convenient. Althou
according to the type of structure presented in Fig. 1k and l
vary in different ways, we will approximate the Fourie
transform ofL by a common expression,

Wr~p,q,n!5(
k,l

L

expS 2
2p i ~pk1ql !

L DWr~k,l ,n!,

where L5AN. Therefore, the matrix of coefficients~i.e.,
random walk transition probabilities! will have the form
L~p,q,nup,q,n8!51
0 a«p 0 a21«2p 0 0 0 0

a21«2q 0 0 «2p 0 0 0 0

0 0 0 0 0 0 0 0

a«q «p 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 a«2q «2p

0 0 0 0 0 a21«p 0 a«2p

0 0 0 0 0 «p a21«2q 0

2

wherea5exp(ip/4) and«52p i /L. For the givenp andq a
simple calculation gives

)
i 51

8

~12xl i !5Det~dnn82xLnn8!5~12x2!2

22x2~12x2!F11cos
2p~p2q!

L

1cos
2p~p1q!

L G12x4 cos
4pp

L
. ~9!
Finally, the substitution of Eq.~9! into Eq. ~8! and then
into Eq. ~1! gives the expression for the partition functionZ:

Z52N~12x2!2N )
p,q50

L H ~12x2!222x2~12x2!F1

1cos
2p~p2q!

L
1cos

2p~p1q!

L G12x4 cos
4pp

L J 1/2

.

~10!

This expression is a finite polynomial in the case of anA60
1-3
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SERGEY SIPAROV PHYSICAL REVIEW E 64 016111
model cluster, but for the infinite structure presented in F
1~b! this polynomial is infinite.

III. DISCUSSION

In order to describe the critical behavior of the system a
to find the corresponding characteristics, a calculation of
thermodynamic potentialF52kT ln Z should be performed
It should be mentioned here that, every time we speak of
exact results or of the critical features of the system’s beh
ior, one should note that in the true sense this can be app
only to nanotubes with infinite length, while for finite-leng
nanotubes or forA60 model clusters the results are appro
mate.

The logarithm of the product gives the sum. Passing fr
summation to integration is the next approximation: in t
case of the finiteA60 model cluster lattice, the sum is neith
infinite nor even very large, although in the case of an~infi-
nite! nanotube this approximation can lead to an exact res
Proceeding with the calculation, we obtain

F52NkT ln 21NkT ln~12x2!

2NkT
1

232p E
0

2pE
0

2p

ln$~12x2!222x2~12x2!

3@11cos~v12v2!1cos~v11v2!#

12x4 cos 2v1%dv1dv2 . ~11!

The formation of the soccer-ball structure corresponds
a phase transition, and theF function has a singularity at thi
point. Notice that, when applied to the finiteA60 model clus-
ter, the last~approximate! expression will not indicate a tru
singularity but a sharp transition. In our case the singula
corresponds to zero value of the logarithmic expression
the integral in Eq.~11!. As a function ofv1 and v2 this
expression has a minimum whenv15v250. If this condi-
tion is satisfied, the expression in the logarithm in Eq.~11! is
equal to (12x2)226x2(12x2)12x4. The last polynomial
is a biquadratic equation with two positive roots

x1,25~xc!1,25A 1
9 ~46A7!' H0.86

0.39.

The last fact suggests that there are two critical temperat
corresponding to the formation of the soccer-ball structu
Analysis of the integral in Eq.~11! shows that in the vicinity
of (xc)250.39 the integral is always positive, while in th
vicinity of (xc)150.86 it can take both signs. The corr
sponding values ofxc for the square, the triangle, and th
honeycomb infinite lattices are@1# 0.44, 0.27, and 0.66. It is
interesting to note that a direct numerical calculation@8# of
xc for the soccer-ball structure provides (xc)num50.628,
which is equal to1

2 @(xc)11(xc)2# of the analytical result
obtained here.

Remark 3. Here we would like to underline that the we
known result@9# suggests that a phase transition can oc
only in an infinite system~the thermodynamic limit!. Thus,
at first glance it seems doubtful that critical behavior can
01611
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obtained on a lattice with only 60 vertices. The importa
particular feature of the system under discussion is the
~physical! periodic conditions, which appear to lead to
‘‘critical’’ behavior in this finite system. As we see from a
the arguments and calculations given above, we get the s
result for the infinite cluster, and this result does not cont
dict @9#. But the character of the calculation that leads to
partition function expression is the same. This means that
possibility of critical behavior here is due not to the infini
number of counted loops, but to the fact that the majority
these loops cancel out because of the superposition or in
section of the loops’ bonds. Although further calculatio
based on the expression for the partition function are ex
only for the infinite system and are approximate for the fin
system, the character of the results must remain the sam
rigorous mathematical treatment of the role of true perio
conditions in the description of the critical behavior of
system constitutes a separate and wider problem.

Now we can get an expansion of the thermodynamic
tential F in powers oft (t5T2Tc), whereTc is a critical
temperature related toxc (xc5tanhJ/2kTc). The regular part
of this expansion can be simply replaced by its value fot
50, while for its singular term we get

E
0

2pE
0

2p

ln~c1t1c2v1
21c3v2

2!dv1dv2 ,

where c1 ,c2 ,c3 are constants andc1.0. Carrying out the
integration, we obtain the singular term of the thermod
namic potential near the transition point in the form

F;2c1t ln t. ~12!

The thermodynamic potential appears to be continu
near the transition point, but the heat capacityC becomes
infinite and is proportional tot21,

C;
1

T2Tc
, ~13!

which differs from the known logarithmic singularity. In
recent paper@10# there is a plot of the heat capacity vs tem
perature for C60 and C70 fullerenes, and the text near it read
‘‘It is interesting to notice that contrary to the majority o
organic substances the fullerenes’ heat capacity depend
on temperature has two inflection points.’’ This result bas
on analysis of experimental data supports the theoretica
sult obtained here.

In conclusion, we can state the following. In this pap
theoretical models of anA60 soccer-ball type finite structure
and of a similar symmetry type infinite nanotube structu
@Fig. 1 ~b!# were discussed in the framework of the latti
gas model. To apply the Vdovichenko method for the pa
tion function calculation, the soccer-ball lattice was topolo
cally transformed into a lattice on a side surface of a cyl
der. Since the vertices of this lattice fall into two sets, it
essential to present the matrix of coefficients in a Jord
form. After that, the analytical form of the partition functio
for this model was found directly. In the case of the infin
lattice the expression for the partition function led to exa
1-4
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results, while for the finiteA60 clusters these results are a
proximate. The thermodynamic potential for this model a
pears to have two critical temperatures, corresponding to
lattice formation. This is in accord with experimental da
for the dependence of the fullerenes’ heat capacity on t
perature@10#. The arithmetic mean of the analytically foun
critical parameters (xc5tanhJ/2kTc) coincides with the
value of the same critical parameter for a soccer-ball clu
found numerically@8# with the help of a computer. The hea
capacity singularity appears to be not logarithmic but
versely proportional to the first power ofT2Tc .

This model can be used to describe the formation of s
physical systems as carbon fullerenes from the gase
phase, or the formation of (H2O)60-ice clusters from liquid
water, or the formation of other similar clusters consisting
other atoms or molecules able to form a tetrahedrally co
dinated network. In addition, this model is applicable f
description of the formation not only of the classic
cs
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fullerene, but of various nanotubes of similar symmetry al
Strictly speaking, a regular nanotube of a certain type
ready presents the lattice on a side surface of a cylinder
was discussed above. In the case of long tubes there i
direct contradiction of the statement made in@9#, but as we
have shown clusters with true~physical! periodic conditions
can demonstrate such ‘‘critical’’ behavior also. The expre
sion obtained for the partition function provides the possib
ity of calculating various thermodynamic parameters of
terest.
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